If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+30t=0
a = -4.9; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·(-4.9)·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*-4.9}=\frac{-60}{-9.8} =6+1/8.1666666666667 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*-4.9}=\frac{0}{-9.8} =0 $
| 140+x=189 | | 4x^2-23x+28=0 | | x/55=25/11 | | 4x^2-25x33=-2x5 | | k/16=8 | | 8x-(2x+24)=24 | | 2x²-12x=-6 | | 2m-12=8m+2 | | -3n-7=56 | | 5/9=m+2/81 | | 4y2+1=10 | | 5y+3(y-5)=5(y+1-4 | | 5x+4+11x-10=90 | | 5x+4=11x-10 | | (3x+8)(2x+20)=180 | | (5x-2)(x+9)=0 | | -2p-5=5 | | (11y-1)=(9y+17) | | .5j-44=76 | | 32+1/2n=24 | | 3-6(4x+6)=-111 | | t^2=9/16 | | 1+9x=109 | | 24=1.5n | | 9x=2x+8 | | 70=4y+7 | | .12y+-1.8=-1.14 | | 0=(1/(x+3))-2 | | 2000+10/100x=1000+15/100x | | 10k+2+4k-6=20 | | 180=47+(2y-17) | | 14=3/4p-28 |